DIPLÔME NATIONAL DU BREVET SESSION 2022

SCIENCES

Série générale

Durée de l'épreuve : 1 h 00 50 points

Dès que le sujet vous est remis, assurez-vous qu'il est complet

Ce sujet comporte 8 pages numérotées de la page 1/8 à la page 8/8

Le candidat traite les 2 disciplines sur la même copie.

ATTENTION: ANNEXES page 4/8 et page 8/8 sont à rendre avec la copie

Matériel autorisé

L'usage de la calculatrice <u>avec le mode examen activé</u> est autorisé. L'usage de la calculatrice <u>sans mémoire</u>, « type collège », est autorisé.

L'utilisation du dictionnaire est interdite.

TECHNOLOGIE – Durée 30 minutes – 25 points

Toute réponse, même incomplète, montrant la démarche de recherche du candidat sera prise en compte dans la notation.

MODIFICATION D'UN OVERBOARD

Le modèle Xenox est un overboard de la société Z. Il s'agit d'un plateau avec deux roues motorisées (figure 1) permettant à une personne de se déplacer.

L'utilisateur dispose d'une télécommande radiofréquence pour activer 3 modes de fonctionnement : boost, musique, anti-vol.

Dans un souci d'amélioration de son produit, la société Z souhaite faire évoluer cette télécommande en la remplaçant par un bracelet radiofréquence avec de nouvelles fonctionnalités.

Figure 1 : l'overboard Xenox et sa télécommande

ANALYSE DE L'OBJET

Dans un premier temps, il est nécessaire d'analyser l'overboard actuel afin d'en prévoir les améliorations. Le détail des composants est indiqué sur la figure 2.

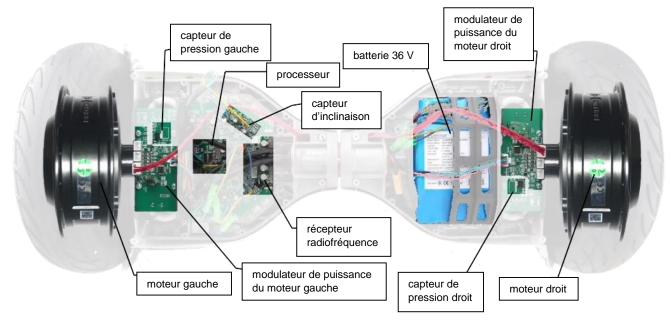


Figure 2 : vue interne de l'overboard Xenox

Une batterie 36 V fournit l'énergie électrique à des modulateurs de puissance qui permettent de commander les moteurs électriques en leur fournissant plus ou moins d'énergie. L'énergie mécanique produite par ces moteurs permet d'entraîner les roues.

Question 1 (4 points) - Sur l'annexe en page 8 (à rendre avec la copie), compléter la chaîne d'énergie de l'overboard.

Question 2 (3 points) - Sur la copie, en s'aidant du schéma représentant la chaîne d'énergie en annexe page 8, indiquer les formes d'énergie au niveau des repères ①, ② et ③.

Un capteur d'inclinaison détecte la position de l'utilisateur : corps en avant pour accélérer, corps en arrière pour ralentir. La télécommande permet d'activer des fonctions spéciales : mode boost, lecture musique, anti-vol, en les transmettant au récepteur radiofréquence. Enfin, par sécurité, la présence d'un utilisateur sur l'overboard est détectée par deux capteurs de pression (un sous chaque pied).

Un processeur analyse ces données et transmet aux modulateurs de puissance les ordres de fonctionnement des moteurs par l'intermédiaire de câbles électriques.

Question 3 (4 points) - Sur l'annexe en page 8 (à rendre avec la copie) compléter la chaîne d'information de l'overboard.

AMÉLIORATION DE L'INTERFACE PILOTE / OVERBOARD

La société Z souhaite concevoir un bracelet de communication afin de remplacer la télécommande.

Figure 3 : le bracelet

Les demandes d'évolution pour le bracelet communicant sont définies ci-dessous.

- Le bracelet devra pouvoir piloter l'overboard. Pour cela le bracelet devra pouvoir reconnaitre l'overboard et lui transmettre des données par radiofréquence (émission des 3 modes de fonctionnement).
- Le diamètre du bracelet devra être réglable (de 5 à 12 cm de diamètre) et devra posséder un écran tactile de 3 cm de diamètre.
- Une batterie 5 V permettra d'alimenter le bracelet pendant au moins 3 heures. Elle sera rechargeable grâce à un cordon USB.
- Le bracelet doit être conçu avec une attention particulière pour le respect de l'environnement. Lors du démontage du prototype, on s'assurera qu'un minimum de 80 % de pièces sont recyclables.

Question 4 (6 points) - Sur l'annexe en page 8 (à rendre avec la copie), compléter le cahier des charges du bracelet communiquant.

CHOIX DU TYPE DE COMMUNICATION RADIO

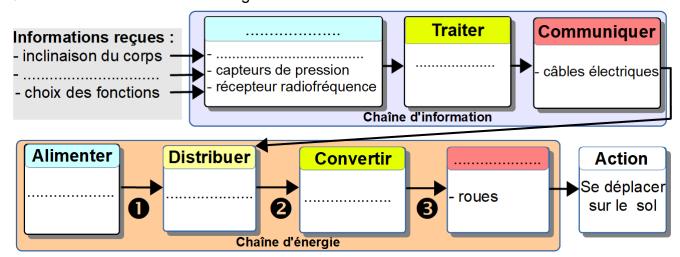
La société Z souhaite choisir le type de communication radio le plus adapté. Le tableau cidessous présente les caractéristiques de plusieurs technologies.

Type de communication	Portée	Sécurité	Débit	Consommation
Bluetooth	10 m	Données codées	1 Mbit/s	120 mW
WiFi	80 m	Données codées	6 Mbit/s	4 000 mW
Infrarouge	20 m sans obstacle	Aucune	10 Mbit/s	100 mW
FM	1 000 km	Aucune	1 Mbit/s	3 000 mW
SHF	6 000 km	Données codées	70 Gbit/s	10 000 mW

La technologie retenue devra avoir une portée suffisante, consommer le moins possible d'énergie, être sécurisée et permettre un débit d'au moins 0,5 Mbit/s.

Question 5 (4 points) - Sur la copie, indiquer le type de communication le plus adapté entre le bracelet et l'overboard. Justifier la réponse avec deux arguments.

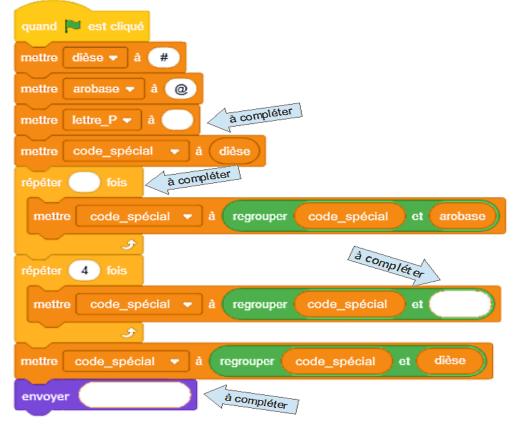
PROTOCOLE DE COMMUNICATION AVEC L'OVERBOARD


Afin que le bracelet et l'overboard puissent communiquer, ils doivent s'être mutuellement reconnus.

Pour cela un code spécial est envoyé par le bracelet à l'overboard : #@@PPPP# Si l'overboard reconnaît ce code, il se met en relation avec le bracelet et le signale par une lumière verte.

Question 6 (4 points) - Sur l'annexe en page 8 (à rendre avec la copie), compléter le programme qui permet d'envoyer le code spécial à l'overboard.

ANNEXE (à rendre avec la copie)


Question 1 et 3 : Chaînes d'énergie et d'information de l'overboard.

Question 4 : Cahier des charges du bracelet.

Fonctions / Contraintes	Critères d'appréciation	Niveaux				
Communiquer avec l'overboard		Boost, musique, anti-vol				
Être réglé à la taille du poignet	Diamètre du bracelet					
Posséder un écran tactile		3 cm				
Être alimenté par une batterie	Tension d'alimentation					
rechargeable		3 heures				
	% d'éléments recyclables	Recyclable à 80%				

Question 6: Protocole de communication avec l'overboard.

Modèle CMEN-DOC v3 A4 ©NEOPTE																		
Nom de famille : (Suivi, s'îl y a lieu, du nom d'usage)																		
Prénom(s) :																		
Numéro Inscription :											lé(e)	le :		/]/		
(Le numéro est celui qui figure sur la convocation ou la feuille d'émargement)																		